词语:坐标系热度:190

词语坐标系拆分为汉字:

坐字的拼音、笔画、偏旁部首、笔顺、繁体字,坐字字源来历,坐字演变

古人双膝跪地,把臀部靠在脚后跟上,这是其本义,后泛指以臀部着物而止息:席地而~。~待。~垫。~骨。~化(佛教指和尚盘膝坐着死去)。~禅。~功。~骑。乘,搭:~车。~船。坚守,引申为常驻,不动:“楚人~其北门,而覆诸山下”。~庄。建筑物的位置……

标字的拼音、笔画、偏旁部首、笔顺、繁体字,标字字源来历,标字演变

树木的末端,引申为表面的,非根本的:~本。治~不治本。记号:商~。路~。~记。~志。~尺。~语。用文字或其他事物表明:~明。~题。~价。~榜(原为揭示、表明;后引申为宣扬、吹嘘)。给竞赛优胜者的奖品,亦指优胜:锦~。夺~。对一项工程或一批货……

系字的拼音、笔画、偏旁部首、笔顺、繁体字,系字字源来历,系字演变

1. 系 [xì]2. 系 [jì]系 [xì]有联属关系的:~统。~列。~数。水~。世~。高等学校中按学科分的教学单位:中文~。化学~。关联:干~。关~。联结,栓:~缚。~绊。~马。维~。名誉所~。牵挂:~恋。~念。是:确~实情。把人或东……

 

查询词语:坐标系

汉语拼音:dì píng zuò biāo xì

词语坐标系基本解释

几何对象(如点、直线、平面等)的集合与有序数组集合之间建立的一套对应法则。与点对应的有序数组称为该点的坐标。常用的坐标系有直线坐标系、平面直角坐标系、平面极坐标系、空间直角坐标系、球面坐标系、柱面坐标系等。

词语坐标系在线造句

  1. In this paper, the body-fitted grids of the combustor with the swirl cup are generated by an elliptical grid generation technique.

    本文采用偏微分方程法生成贴体网格,在任意曲线坐标系下数值研究两种先进燃烧室火焰筒及其旋流器三维紊流流场。

  2. The definition of the China Geodetic Coordinate System 2000 is identical with that of the International Terrestrial Reference System.

    中国大地坐标系的定义,与国际地球参考系的定义一致。

  3. And when I say that the curl measures the rotation in a motion, well, that depends on which coordinates you use.

    而旋度度量了,运动中的旋转情况,这跟坐标系的选择有关。

  4. Since scalars are independent of the coordinate system, the dot product of two vectors is called a scalar invariant.

    因为标量与坐标系无关,故两个矢量的点积称为标量不变量。

  5. If I look at what happens in the y, z plane in the plane of a blackboard, it will just look like a line that goes downward with slope one.

    我们来观察黑板上坐标系的yz平面,它就看起来,像一条斜率为1且向下延伸的直线。

  6. They form a three - parametric , orthogonal net and may be chosen as coordinate lines of a special, curvilinear coordinate system .

    它们形成三参数正交网,可以把它们选作特殊曲线坐标系的坐标线。

  7. We have been working with triple integrals and seeing how to set them up in all sorts of coordinate systems.

    我们目前已经学习了三重积分,以及如何在各种坐标系中建立它们。

  8. In fact, if I rotated my coordinates to fit with any other plane, I could still do the same things.

    事实上,即使旋转坐标系到某个平面,还是可以做到一样的东西。

  9. Using matrix as a powerful mathematical tool, we present the description of a particle's motion in general curvilinear coordinate system.

    利用矩阵这一强有力的数学工具,给出了一般曲线坐标系下质点运动的描述。