查字网是免费的在线辞海新华字典查询网站,内容来源于网络,如有侵权请及时通知我们删除。
查字网为您提供包括汉字源流、汉字字源、字形演变等查询,收录词语超过40万条,提供汉语词组解释、反义词、近义词、汉字组词造句等内容。
欢迎您使用查字网汉字字源字典查询汉字流源、字源字义及字源演变,我们将继续丰富和完善字源网字典,以便为您提供更好地帮助和服务。
查字网 版权所有 苏ICP备11037243号
词语高等数学拆分为汉字:
高字的拼音、笔画、偏旁部首、笔顺、繁体字,高字字源来历,高字演变
由下到上距离大的,与“低”相对:~峰。~空。~踞。~原。~耸。~山流水(喻知己、知音或乐曲高妙)。~屋建瓴(形容居高临下的形势)。~瞻远瞩。高度:他身~一米八。等级在上的:~级。~考。在一般标准或平均程度之上:~质量。~消费。~价。~档。~……
等字的拼音、笔画、偏旁部首、笔顺、繁体字,等字字源来历,等字演变
古代指顿齐竹简(书)。数量、程度相同,或地位一般高:相~。平~。~于。~同。~值。~量齐观。表示数量或程度的级别:~级。~次。~第。~而下之。特指台阶的级。种,类:这~事。表示同一辈份的多数人:我~。尔~。表示列举未尽,或用于列举煞尾:北京……
数字的拼音、笔画、偏旁部首、笔顺、繁体字,数字字源来历,数字演变
1. 数 [shù]2. 数 [shǔ]3. 数 [shuò]数 [shù]表示、划分或计算出来的量:~目。~量。~词。~论(数学的一支,主要研究正整数的性质以及和它有关的规律)。~控。几,几个:~人。~日。技艺,学术:“今夫弈之为~,小~……
学字的拼音、笔画、偏旁部首、笔顺、繁体字,学字字源来历,学字演变
效法,钻研知识,获得知识,读书:~生。~徒。~习。~业。~友。~者。~阀。~制。~历。~步邯郸(讥讽人只知模仿,不善于学而无成就,亦作“邯郸学步”)。传授知识的地方:~校(简称“学”或“校”)。~院。~府。中~。大~。上~。掌握的知识:~问……
查询词语:高等数学
汉语拼音:gāo děng shù xué
高等数学是指相对于初等数学和中等数学而言,数学的对象及方法较为繁杂的一部分,中学的代数、几何以及简单的集合论初步、逻辑初步称为中等数学,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。
They had three children, but Ada's family and social responsibilities did not keep her from continuing her study of advanced mathematics.
他们有三个孩子,但艾达的家庭和社会责任并没有阻止她继续研究高等数学。
They talked a sort of higher mathematics, these two. Nothing of flesh and blood ever crept in; it was weird, ghostly, ghoulishly abstract.
他俩谈论的是一种高等数学,不含一点血肉的东西,鬼魂般荒诞,抽象得可怕。
None of the humour, the music, or the mysticism of high mathematics ever entered his head.
所有的幽默,音乐和高等数学中的玄想,在他的头脑里从来都不存在。
The capacity for suffering is not just another characteristic like the capacity for language or higher mathematics.
感受痛苦的能力并不像其他的特殊能力,如运用语言的能力或计算高等数学的能力。
I felt a pull toward the subjects that involved logic and data, and I loaded up on courses in advanced math.
我感到有一股力量牵引着我奔向那些涉及逻辑和数据的学科,于是我通吃高等数学的众多课业。
One of important ways is to perform mathematical modeling practice to improve students' ability to apply mathematics.
开展数学建模活动,提高大学生应用数学知识的能力,是高等数学教学改革的一个重要方向。
You may be the kind of person who needs to know something about advanced math to get the mostout of life.
你可能成为那种懂得高等数学解决生活中大多数事情的人。
The significance of Higher Mathematics as a foundation curriculum, is dependent on its importance and particularity.
高等数学作为高职院校的一门主要基础课程,其重要性及特殊性已充分体现了此课程本身的价值。
Definite integral is one of the important contents of advanced mathematics, graphical method is a kind of visible solution method.
定积分是高等数学中最重要的内容之一,图示法是一种直观的解题方法,现从多个方面介绍图示法在定积分中的应用。
通常认为,高等数学是由17世纪后微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。相对于初等数学和中等数学而言,学的数学较难,属于大学教程,因此常称“高等数学”,在课本常称“微积分”,理工科的不同专业。文史科各类专业的学生,学的数学稍微浅一些,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。
初等数学研究的是常量与匀变量,高等数学研究的是非匀变量。高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科,也是非数学专业理工科专业学生的必修数学课,也是其它某些专业的必修课。
作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。
一般认为,16世纪以前发展起来的各个数学总的是属于初等数学的范畴,17世纪以后建立起了更为深入的微积分、空间解析几何与线性代数、级数、常微分方程等数学学科,因此称为高等数学。
1691年,法国数学家米歇尔·罗尔提出罗尔定理,对代数学的发展起了重要作用,是微分学中的几个中值定理之一,是导数应用的理论基础。另一名法国数学家拉格朗建立微分学中的几个中值定理之一,弥补了罗尔定理中的不足条件,并建立拉格朗日乘法。法国数学家洛必达在1696年建立洛必达法则,并发表了著作《阐明曲线的无穷小于分析》,它是微积分学方面最早的教科书,洛必达法则是对柯西中值定理结合未定式极限推出的一种求导方法,实现了简便实用的数学原则。
德国数学家莱布尼茨和英国科学家牛顿先后独立建立了微积分,牛顿建立了围绕万有引力定律的相关数学公式,莱布尼茨在级数收敛性质中提出了莱布尼茨判别法。瑞士科学家伯努利1738年的著作《流体动力学》提出了“流速增加、压强降低”的伯努利原理,写出了流体力学的方程,称之为伯努利方程。
19世纪以前确立的几何、代数、分析三大数学分支中,前两个都原是初等数学的分支,其后又发展了属于高等数学的部分,而只有分析从一开始就属于高等数学。分析的基础——微积分被认为是“变量的数学”的开始,因此,研究变量是高等数学的特征之一。原始的变量概念是物质世界变化的诸量的直接抽象,现代数学中变量的概念包含了更高层次的抽象。如数学分析中研究的限于实变量,而其他数学分支所研究的还有取复数值的复变量和向量、张量形式的,以及各种几何量、代数量,还有取值具有偶然性的随机变量、模糊变量和变化的(概率)空间——范畴和随机过程。描述变量间依赖关系的概念由函数发展到泛函、变换以至于函子。与初等数学一样,高等数学也研究空间形式,只不过它具有更高层次的抽象性,并反映变化的特征,或者说是在变化中研究它。例如,曲线、曲面的概念已发展成一般的流形。按照埃尔朗根纲领,几何是关于图形在某种变换群下不变性质的理论,这也就是说,几何是将各种空间形式置于变换之下来研究的。
无穷进入数学,这是高等数学的又一特征。现实世界的各种事物都以有限的形式出现,无穷是对他们的共同本质的一种概括。所以,无穷进入数学是数学高度理论化、抽象化的反映。数学中的无穷以潜无穷和实无穷两种形式出现。在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。另外一些形式上更为抽象的极限过程,在别的数学学科中也都起着基本的作用。还有许多学科的研究对象本身就是无穷多的个体,也就说是无穷集合,例如群、环、域之类及各种抽象空间。这是数学中的实无穷。能够处理这类无穷集合,是数学水平与能力提高的表现。为了处理这类无穷集合,数学中引进了各种结构,如代数结构、序结构和拓扑结构。另外还有一种度量结构,如抽象空间中的范数、距离和测度等,它使得个体之间的关系定量化、数字化,成为数学的定性描述和定量计算两方面的桥梁。上述结构使得这些无穷集合具有丰富的内涵,能够彼此区分,并由此形成了众多的数学学科。
数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。